We define a localised Euler class for isotropic sections, and isotropic cones, in SO(N) bundles. We use this to give an algebraic definition of Borisov-Joyce's sheaf counting invariants on Calabi-Yau 4-folds. When a torus acts, we prove a localisation result. This talk is based on the joint work with Richard. P. Thomas.

28
October 2020
3:15pm - 4:15pm
Where
https://hkust.zoom.us/j/9584764665 (Passcode: dt4fold)
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
语言
English
Other Events
Seminar, Lecture, Talk
MATH - Seminar on Data Science - Theory of Deep Convolutional Neural Networks
Deep learning has been widely applied and brought breakthroughs in speech recognition, computer vision, and many other domains. The involved deep neural network architectures and computational issues ...
18
Nov 2020
Seminar, Lecture, Talk
MATH - Seminar on Applied Mathematics - Thirty Years of Applied Mathematics
The 50's to the 80's saw tremendous growth of applied math, driven mainly by PDEs and numerical algorithms. The integration of the two produced the "Courant School", which has had a far-reaching impac...
11
Nov 2020