The theory and practice of stochastic optimization has focused on stochastic gradient descent (SGD) in recent years, retaining the basic first-order stochastic nature of SGD while aiming to improve it via mechanisms such as averaging, momentum, and variance reduction. Improvement can be measured along various dimensions, however, and it has proved difficult to achieve improvements both in terms of nonasymptotic measures of convergence rate and asymptotic measures of distributional tightness. In this work, we consider first-order stochastic optimization from a general statistical point of view, motivating a specific form of recursive averaging of past stochastic gradients. The resulting algorithm, which we refer to as Recursive One-Over-T SGD (ROOT-SGD), matches the state-of-the-art convergence rate among online variance-reduced stochastic approximation methods. Moreover, under slightly stronger distributional assumptions, the rescaled last-iterate of ROOT-SGD converges to a zero-mean Gaussian distribution that achieves near-optimal covariance. This is a joint work with Wenlong Mou, Martin Wainwright, and Michael Jordan.
8月28日
11am - 12pm
地点
https://hkust.zoom.us/j/5616960008
讲者/表演者
Dr. Junchi LI
University of California, Berkeley
主办单位
Department of Mathematics
联系方法
mathseminar@ust.hk
付款详情
对象
Alumni, Faculty and Staff, PG Students, UG Students
语言
英语
其他活动
5月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...
5月9日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture – Deconstructive Homologation of Ethers and Amides
Abstract Preparation of diverse homologs from lead compounds has been a common and important practice in medicinal chemistry. However, homologation of many functional groups, such as ethers an...