Welcome

Inspiring a culture for sustainable innovation.

Pushing the boundaries of innovation, making new discoveries and establishing new research paradigms.

About the school
Committed to pursuing cutting-edge research, making groundbreaking discoveries and establishing new research paradigms.
Our quality and well-balanced education places particular emphasis on grit, curiosity and creativity…
At the School of Science, we promote a vibrant and dynamic environment that emphasizes academic excellence, scholarship, innovation, and collaboration.
Andrew G. COHEN
ACTING DEAN OF SCIENCE
Events
Seminar, Lecture, Talk |  21 Jun 2021
Department of Mathematics - PhD Student Seminar - A three-dimensional unified gas-kinetic wave-particle solver for flow computation in all regimes
In this talk, the unified gas-kinetic wave-particle (UGKWP) method will be presented for the three-dimensional multiscale flow simulations. Based on the direct modeling methodology, the unified gas-kinetic scheme (UGKS) models the flow dynamics directly on the numerical mesh size and time step scales, and it is able to capture the flow dynamics from the kinetic scale particle transport to the hydrodynamic wave propagation seamlessly according to the local cell Knudsen number. Instead of discretizing the particle velocity space in UGKS, the UGKWP method is composed of the evolution of deterministic waves and stochastic particles. With dynamic wave-particle decomposition according to the cell Knudsen number, the UGKWP method is able to capture the continuum wave interaction and rarefied particle transport under a unified framework and achieves high efficiency in different flow regimes. The UGKWP flow solver is constructed in three-dimensional space and is validated by many test cases at different Mach and Knudsen numbers. The examples include a 3D shock tube problem, lid-driven cubic cavity flow, high-speed flow passing through a cubic object, and hypersonic flow around a space vehicle. Moreover, the UGKWP method is further developed for diatomic gas with the energy exchange between translational and rotational modes for flow study in all regimes. With the wave-particle formulation, the UGKWP method has great potential in solving three-dimensional multiscale transport problems with the co-existence of continuum and rarefied flow regimes, especially for the high-speed rarefied and continuum flow simulation around a space vehicle in near-space flight, where the local Knudsen number can vary significantly with five or six orders of magnitude differences.
No. 19
Science Focus
Science Focus is specially written and designed by HKUST science undergraduate students under the guidance of our faculty and staff. It aims to stimulate and nurture students’ interest in science and scientific research through interesting articles.
Study at the
School of Science
Undergraduate
Programs
Offering diverse, interdisciplinary and inquiry-driven undergraduate education in an intellectually stimulating environment.
Postgraduate
Programs
Providing students with exposure and hands-on training in innovative, cutting edge methodologies and technologies via research and taught postgraduate education.
Academic Units
Chemistry
Life Science
Mathematics
Ocean Science
Physics
Chemistry
The Department of Chemistry has dynamic, friendly and cooperative faculty members active in all areas of chemical research, and whose research is internationally recognized.
Life Science
The mission of the Division of Life Science is to facilitate the advancement of both research and education in the field of biological sciences.
Mathematics
Excellence in research and a commitment to deliver effective and quality teaching programs are the two pillars on which the Department of Mathematics is based.
Ocean Science
The Department of Ocean Science aims to lead in understanding ocean science and technology, from foundation knowledge to applications in marine conservation, global climate change, management of marine resources, socio-economy and sustainable development.
Physics
The mission of the Department of Physics is captured by the triangle of teaching, research, and innovation.
Research
Pushing the boundaries of innovation, making new discoveries and establishing new research paradigms.